Intradural Spinal Tumours

Mr. Nigel Mendoza
Consultant Neurosurgeon
Charing Cross Hospital
Epidemiology of Intradural tumours

20 % of all CNS tumours are in the spinal canal

- **Incidence**: 2 - 4 / 100,000
- **Female : Male** 1 : 1
 - Meningiomata are more common in female population
- **Pathology**
 - 90 % benign
 - Congenital tumours (dermoids, teratomas) more common in children
 - **Site**: Tx spine > Cx spine > Lx spine
 - **Extramedullary > Intramedullary**
 - Intramedullary tumours more common in children
Primary Spinal tumours : Classification

- Extradural:
 - Primary spinal tumours
 - Chordoma, Osteoid osteoma, ABC
 - Metastatic
 - Lung, Breast, Prostate

- Intradural:
 - Extramedullary: 75%
 - Meningioma
 - Schwannoma / Neurofibroma
 - Intramedullary: 25%
 - Ependymoma
 - Astrocytoma
 - Dermoid
Presenting clinical symptoms

- Related to site of the lesion
- Related to pathology
 - Histological diagnosis
 - Mechanical
 - Vascular
 - Venous compression
 - Arterial occlusion

Presentation

- Pain
 - Radicular, nocturnal, persistent, Valsalva

- Neurological deficit due to:
 - Neuraxial compression
 - Vertebral column instability

- Motor weakness
- Sensory loss
- Gait disturbance
- Sphincter disturbance
Investigations

- Plain X ray
 - Usually unhelpful but 10% of tumours may demonstrate a plain radiological abnormality
 - Expansion of intervertebral foramen
 - Scalloping of vertebral body with chronic compression
 - Calcification in tumour
- Lumbar puncture
 - Non-diagnostic
 - Raised protein
 - Cytology
- MRI with gadolinium enhancement is primary diagnostic modality
- Most tumours are isodense or slightly hypointense compared with normal spinal cord
 - Majority enhance with contrast
- CT / Myelography when MRI contraindicated
Intradural - Extramedullary tumours

- Incidence:
 1 - 2 / 100,000 population

- 90%:
 Meningioma
 Schwannoma

10% heterogeneous group

- Chordoma
- Ependymoma
- Dermoid / Epidermoid
- Lipoma
- Spinal metastasis (4%)
- Lymphoma
- Arachnoid cyst
Intradural - Extramedullary Spinal Meningioma

• Age: 50 - 70 decade

• Female more common: 75 - 85 %
 – ? Growth related to female sex hormones - progesterone receptors
 • Increased growth rate in pregnancy and pt with breast Ca has been observed
 • Radiation induced

• Site
 – Single lesion (rarely multiple)
 – Mainly thoracic: posterolateral (? Arise from arachnoid cell clusters at level of nerve root)
 – Cervical: more commonly anterior
 – 10 % have an intradural and extradural component
Extramedullary tumour: Meningioma

73 yr female (T.G) with thoracic pain and 6/12 increasing difficulty in walking: spastic paraparesis
Extramedullary tumour Nerve Sheath Tumours

Neurofibroma / Schwannoma

• Neurofibroma
 – Single / Multiple (NF1 / NF2)
 – Arise from sensory root, dumbell shaped
 – More frequent in Tx spine
 – 30 - 50th decade
 – Surgical removal of multiple lesion difficult or impossible

• Schwannoma
 – commoner in absence of NF
 – Isolated single lesion
 – Arise from sensory root
 – Complete excision possible
Extramedullary tumour: Neurofibroma

33 yr (C.S) female with 18/12 sciatica.
Intradural Extramedullary tumour: Metastasis

27 yr (M.S) male with malignant pituitary macroadenoma (Cushings disease) and 6/12 progressive difficulty in walking
Intradural - Extramedullary tumour

Chordoma
66 yr (C.G) male with 2 yr history of coccydynia

Metastasis
65 yr female with Lx/Sacral pain: Breast Ca
Intradural - Intramedullary tumours

- **Incidence**
 2 - 4% of all CNS tumours
 Adult: 20% of all intradural tumours
 Children: 50% of all intradural tumours

- **Ependymoma**: 30%
- **Astrocytoma**: 30%
 High grade glioma (10%)
 Low grade glioma
 Oligodendrogloma

- **Rare lesions**: 30%
 Dermoid / Epidermoid
ependymoma
 Cavernous angioma
 teratoma
 haemangioblastoma
 lipoma
 neuroma
 lymphoma
 metastasis

- **Expansile non tumourous lesions**
 Multiple sclerosis
 Bacterial abscess / empyema
 Sarcoidosis
Intradural - Intramedullary tumours: Ependymoma

- Most common intramedullary tumour in adult population over 30 yrs of age
- 50% of all CNS Ependymoma arise in spinal canal
 - 30% occur in filum terminale
- Pathology
 - Macroscopic: Solid grey/purple tumour, occ cystic, well demarcated
 - Microscopic: Majority are histologically benign but biological variable behaviour
- Therapy
 - Surgical
 - Macroscopic excision can be achieved in about 80%
 - Recurrence Rate: 5 - 10% in 10 years
 - Radiotherapy
 - following subtotal excision
 - Lack of evidence for efficacy
Intramedullary tumour : Ependymoma

58 yr male (B.F) with 6 yr progressive leg weakness, 5 yr arm pain and 18/12 sensory disturbance in hands with tetraparesis
Intradural - Intramedullary tumours : Astrocytoma

- 2 - 4 % of all CNS Astrocytoma arise in spinal cord : consistant with relative volume
- Occur at any age but more common in 1st 3 decades
- In children / adolescence Astrocytoma > Ependymoma ; 5 : 1
- 90 % Low grade
- 10 % High grade
 - In Adult population : 20 % High grade astrocytoma

Prognosis
 - In childhood astrocytoma
 • 80% 5 year survival , 55% 10 year survival
 - Adult high grade astrocytoma : Poor prognosis
 • Median Life expectancy < 2 yrs
Intramedullary tumour: Astrocytoma

24 yr male (G.G.) with 18/12 Tx pain with bilateral leg radiation. 5/52 of increasing difficulty with micturition.
Intramedullary tumour: Haemangioblastoma

- 32 yr female (K.J)
- Progressive arm weakness
- Sx 3 yrs prior to diagnosis
- Surgical excision
- Complete recovery
Surgery: Historical perspective

- 1887: William Gowers clinical diagnosis of spinal tumour
- 1887: Victor Horsley excised intradural tumour under ether anaesthesia.
- 1925: Elsberg diagnosis and excision of intradural intramedullary tumour.
- 1968: Greenwood reports the first surgical series of patients following treatment of intradural tumour.
Historical perspective

- 1883: McEwan undertook a laminectomy and excised a ‘fibrous neoplasm of the theca’

Pt had a complete paraplegia but was playing football again after 5 years!

- 1888: William Gowers referred a patient to Victor Horsley who undertook a laminectomy and could not find the lesion. His assistant Charles Ballance ‘encouraged’ him to go a level higher and then excised a ‘fibro-myxoma of the theca’

The ‘extrusion’ method

• Elsberg proposed a two stage operation
 – Initial laminectomy + myelotomy
 – Extirpation following delivery of the tumour
Aims of surgical treatment

• Total excision of lesion
 – No recurrence

• Complete neurological recovery
 – prevent neurological progression

• No postoperative complication / disability
Surgical approaches

• Cervical
 – Transoral
 – Far lateral
 – Posterior cervical laminectomy
 – Anterior approach

• Thoracic
 – Posterior laminectomy
 – Costo - tranversectomy
 – Thoracotomy

• Lumbar
 – Posterior laminectomy
 – Far Lateral
 – Anterior retroperitoneal
Surgical approach: Posterior decompressive laminectomy

- Preoperative spinal marker to localise level
- Anaesthesia: General
- Position: Prone
 - Montreal cushion
 - Allow good chest expansion & ventilation
 - Allow space for the abdomen to expand
- Midline incision
 - Subperisosteal muscle dissection
 - Decompressive laminectomy
 - High speed drill / Punches
 - Dural opening: Arachnoid opened separately

- Tumour Excision
 - Operating microscope
 - Ultrasonic aspirator
 - Bipolar diathermy
- Closure
 - Layered
 - Drainage
 - prevent CSF leak
 - Spine reconstruction
 - prevent instability especially in children
Prognostic factors influencing surgical outcome

• Preoperative neurological functional disability
 – Children better recovery compared to adult
 – Good function preop associated with post op function
 – Severe disability has poor prognosis but full recovery can still occur

• Complete resection

• Histological diagnosis
Intradural Extramedullary Tumour: Neurofibroma

35 yr male with 18 / 12 persistant back and leg pain
Intradural Extramedullary Tumour: Neurofibroma

35 yr male with 18 / 12 persistent back and leg pain
Spinal intradural tumour: Neurofibroma

30 yr male (A S) with 12/12 history of arm pain and progressive arm weakness
Intradural Extramedullary Tumour: Meningioma

73 yr female (M.S.) with 2 year progressive tetraparesis, urinary retention and dysphagia
Intradural Extramedullary Tumour: Meningioma
Spinal intramedullary tumour: Astrocytoma
73 female (I A-S) with 3/12 progressive paraparesis
Spinal intradural tumours: Part 1 - Extramedullary

1st reported series in post scan era: all had CT or MRI

- 1980 - 1996: 66 pts underwent surgery for intraspinal nerve sheath tumour
 - 64% Schwannoma
 - 26% Neurofibroma

- 54% male: 46% female,
- Age 12 - 81 years, F/U 1 - 12 years Mean F/U: 6.6 years
- Cx: 45%, Tx: 26%, Lx: 29%
- 18 pts had NF1, 2 pts had NF2
- 6% malignant tumour
- Mean time of Symptoms to diagnosis: 30 months
Spinal intradural tumours: Part 1 - Extramedullary

- 90 procedures undertaken: 66 initial procedures, 24 for residual / recurrent lesion
 - Radical excision +/- vertebral reconstruction
 - 72% posterior laminectomy
 - 11 operations required spinal stabilisation

- Results
 - 90% pain relief
 - Frankel grade: 37 pts improved > 1 grade, 26 pts unchanged, 3 pts were worse

- Complications
 - 5 CSF leak, 1 VA injury, 1 post op kyphosis, 1 DVT
 - No deaths
Spinal intradural tumours: Part 2 - Intramedullary

• 1980 - 1996: 54 patients underwent surgery for intradural intramedullary tumour
 Cervical 33%, Thoracic 30%, Lumbar 24%
 36 Male : 18 Female. Age 11 - 81 yrs
 - Ependymoma 21/54, Astrocytoma 14/54, Lipoma 6/54, Haemangioblastoma 6/54
 Symptoms: Spinal pain 52%, Limb weakness 65%, Sensory Sx 55%, Sphincter disturbance 44%
 Duration of symptoms to diagnosis: 1/52 - 38 yrs

• Surgery
 50% had Total tumour excision,
 3 pts developed tumour recurrence (5/12, 2 yr and 13 yr post Rt)
Spinal intradural tumours : Part 2 - Intramedullary

• Complications
 4 Deaths within 1/12 of Surgery
 6 CSF leak

• F/U : 2 - 18 yrs in 40 pts
 90% remain independently mobile

• Outcome
 3 patients regained ability to walk
 3 had increased post op motor deficit : unable to walk
Conclusions

• Intradural tumours are rare
• Delay in diagnosis is common
• Majority of lesions are benign
• Maintain index of suspicion in patients with persistant and progressive neurological symptoms and signs
• Good recovery can occur even with significant neurological deficit
Thank you